Response to “The cost of latency,” by Ciamac Moallemi and Mehmet Sağlam
Robert Almgren, NYU and Quantitative Brokers

The effect observed in this paper is due to time discretization, not to latency. The authors have ignored the price change within the interval T_i to T_{i+1}, which is of the same asymptotic size $O(\sqrt{\Delta t})$ as the price change from T_i to T_{i+1}. Correctly calculated, the cost for the discretization-only model in Section 4.3 is of the same order as the overall cost for the latency model.

Consider the model of Section 4.3, in which time is discretized into intervals of length Δt, and the limit price ℓ_i may be determined instantaneously at T_i but is required to be held constant until T_{i+1}. The authors say (second bullet point) that the limit order will execute at ℓ_i if an impatient buyer appears between T_i and T_{i+1} and if “$\ell_i \leq S_{T_i} + \delta$, i.e., the limit price ℓ_i is within a margin δ of the bid price at the start of the interval.” In this model the optimal limit price level is $\ell_i^* = S_{T_i} + \delta$, and the value obtained is close to the value of the continuous process. (With their approximate Poisson arrival probability $\mu \Delta t$ in place of the true value $1 - e^{-\mu \Delta t}$, the value of the discrete problem is actually slightly higher than the value of the continuous problem, a clue that something is wrong; with the exact probability the values are exactly equal.) But using the bid price at the start of the interval is an incorrect discretization of the continuous problem.

A correct discretization would use the bid price S_{τ} at the time τ that the impatient buyer appears, since the market price does not stop moving just because of this trader’s latency. Then, if the limit price ℓ_i were to be set at ℓ_i if an impatient buyer appears between T_i and T_{i+1} and if “$\ell_i \leq S_{T_i} + \delta$, then when the buyer appears, with probability $1/2$ we would have $S_{\tau} < S_{T_i} = \ell_i - \delta$ and the limit order would not fill. In effect, with that strategy the arrival rate would be $\mu/2$ rather than μ, and the value under this strategy would be worse by $O(1)$ than the continuous result.

To reduce this cost, exactly as clearly described in 4.1, the limit order price could be lowered by $C \sigma \sqrt{\Delta t}$, increasing the fill probability by a finite amount but reducing the payoff by a cost $O(\sqrt{\Delta t})$. As in 4.1, the optimal strategy will reduce the limit order price by an asymptotically slightly larger amount, achieving the same near-certain fill probability as in the continuous problem, with cost $O(\sqrt{\Delta t} \log \Delta t)$. Of course the problem including latency will have a higher cost than this, since as observed in Appendix B any strategy for the problem with latency is admissible for the discretization-only problem. But the costs are of the same asymptotic order in Δt, demonstrating that the essential phenomenon is time discretization rather than latency.

To summarize, the effect observed in this paper is primarily due to the fact that the limit order cannot be modified to adjust to price motion during a finite time interval. If the discrete-time model is constructed so that the price does not move during a time interval Δt but only at the end of that interval, then of course it is found that latency is necessary to the result. But if price motion during the interval Δt is included, then the effect will be seen even without latency.