Errata for Search and Detection (4th ed) by Alan Washburn as of September 2014.

1) In figure 1-2, the dashed line indicating the searcher's track is missing. It should end at the apparently isolated arrowhead. "Search effort outside search area" should be crossed out, since it is not illustrated.

2) Page 1-5, line 2, change theta to 0 (zero).

3) Page 1-7, two lines above formula 1.3-3, change "postive" to "positive".

4) Page 4-7, third bullet, change "end" to "start".

5) Page 4-12, line 1. The answer is 300 meters, not 150 meters.

6) Page 5-4 in formula 5.2-1, replace both references to \(f_i(t_i) \) with \(p_i(1 - \exp(-t_i/\tau_i)) \).

7) Page 5-13, line 1, \(k_i \) should be \(k_i \).

8) Page 5-19 in exercise 3, change the subscript on \(q \) to \(i \). The overlook probability is 0.6 in all four cells.

9) Page 8-5, change "one sigma" to "two-sigma".

10) Page 10-11. In formula 10.5-1, change the uppercase I to lowercase i.

11) Page 10-18. In the formula for \(\bar{c} \) in equation 10.6-2, change subscript "d" to "f".

12) On page 11-4, change the first instance of "Table 11-5" to "Table 11-3". The second instance is correct.

13) Page 10-20, exercise 3. The problem statement should be: "A certain receiver currently has \((p_f, p_d) = (0.1, 0.9) \). What would be the effect on \(p_d \) if the signal power were doubled and the false alarm probability were held constant? Assume that (10.1-4) holds."

14) Page 10-22, exercise 7, the formula in the answer should be

\[T_{ENAP} = \sum_i (1/\alpha_i + 0.5\delta_i\tau_i) \] . The numeric answer is correct.

15) Page 11-4, reference 11 should be reference 1.

16) Page 11-8, line 8, change \(1/E(R) \) to \(E(1/R) \).