Abstract

We describe and make available three web-based simulations that help to teach concepts related to process flow and variability. These programs simulate, (i) a G/G/1 queue, (ii) a single-stage process to demonstrate the long-run validity of Little’s Law and (iii) a continuous-time reorder point/reorder quantity inventory system. All of the simulations are interactive, for they allow users to change system parameters by moving simple sliders. The simulations do not require specialized software to run and are available through any web browser. We offer evidence of how the simulations have helped the students to learn, including documentation from a web-based exercise with the queueing simulation that was completed by 74 students.

This document describes three web-based simulations that help students understand the dynamics of continuous-time systems subject to variability. The simulations have been useful in introductory MBA operations management courses, and they would also be appropriate for undergraduate courses in operations research and operations management. Given that the simulations are simple to use and entertaining to watch, they may also be appropriate for high school students to motivate the study of operations research.

This document describes the simulations, the pedagogical goals that motivated their development, alternate teaching tools that are available to instructors, and how we have used the simulations in the classroom. We end with a description of how the models helped our students to learn the concepts, including a summary of the students' answers to a set of web-based exercises with one of the simulations.

1. The Simulations

The simulations themselves are self-explanatory and can be run in any web browser. Here we provide brief descriptions of each. To run a simulation, just click on the name of each simulation model in the next three paragraphs. Information on downloading the simulations and making them available to your class is also included below. The last three pages of this document show screen shots of the simulations.

The Airport Security Simulation\(^{(1)}\) simulates a single-server queue. Using sliders, users control the arrival and service rates of customers to the queue. Another set of sliders control the variability (coefficient of variations, or CV’s) of the inter-arrival and the service times. As the queue evolves, individual queue times are plotted, along with the average waiting time for all customers so far. Users can also choose from among three simulation speeds. The slowest speed allows users to watch each customer arrive, wait, and be served. The fastest simulation speed allows users to see how queue lengths and waiting times evolve over long periods of simulation time.

Note: this simulator requires the Macromedia Shockwave Plug-In, which is already installed in most web

browsers but can also be downloaded from >Macromedia’s website.

The Little’s Law Simulation demonstrates that Little’s Law is satisfied over the long-run, despite the presence of variability in the system. In this simulation, a series of stick-figures enter a room and stay in the room for a random length of time. While in the room, the stick figures wander and complete whimsical 'tasks' (some break apart and re-assemble, some spin, some disco-dance, and some drink coffee). Users control the mean and CVs of the inter-arrival times and the time-of-stay. As the stick figures leave, they turn green and a counter that indicates their total time in the room is frozen. The simulation plots running averages of three quantities: (i) the actual 'inventory' of people in the room, (ii) the product of the actual rate of arrivals and the actual time spent in the room, and (iii) the expected value of these quantities according to Little’s Law, calculated from the mean values chosen by the user. As long as the parameter values are kept constant, these three quantities eventually converge, as predicted by Little’s Law. This simulator is run by the Macromedia Flash player, which is available in most web browsers.

The Inventory Simulation displays a continuous-review reorder point/reorder quantity system. Stick-figure customers remove products (boxes) from inventory in a store, while trucks arrive to replenish the inventory. Users can use sliders to change the arrival rate of customers and the lead-time of trucks, as well as the variability of these processes. Users can also change the reorder quantity (the “Truck load”) and the reorder point (“ROP”). The simulation plots the inventory position, the on-hand inventory, and the long-run average on-hand inventory calculated from the parameter values chosen by the user. The simulation also dynamically updates the realized number of lost sales and the percentage of inventory cycles without a stock-out (the "Average service level"). This simulator is run by the Macromedia Flash player, which is available in most web browsers.

2. Software Attributes and Pedagogical Goals

These tools can be used to run experiments to illustrate the impact of utilization and variability on the three systems. We developed the simulations to introduce particular concepts, and each tool is followed in the syllabus by more sophisticated software tools and mathematical models.

2.1. Common Attributes of the Software

Because these tools provide the students with their first exposure to these concepts, we designed them 1) to allow students to be in control of the simulation and thus to be more engaged in the learning, and 2) to be easy to use so students would not become frustrated using the software, and 3) to be inexpensive and easily accessible.

In particular, we designed all three simulations to,

- build intuition, by observing simulated people versus interpreting static graphs and formulas,
- allow the students to conduct hands-on experimentation, rather than passively watching a professor demonstrate queueing phenomenon with his/her single copy of the software,
- be less expensive in time and money than having every student own and learn animated simulation software.

2.2. Pedagogical Goals of the Queueing Simulation

The objective of the queueing simulation is to help students generate, through experimentation, answers to the following questions:

- why does queueing occur when utilization < 1?
- why does wait increase with utilization in systems with variability?
- why does wait increase when the inter-arrival and/or service variability increase?
• what is the difference between steady state and transient results (e.g., starting from an empty system versus an equilibrium start, having arrival rate increase for a short period, or having service rate decrease for a short period)?
• what is the difference between the actual customers’ experiences (which can vary from customer to customer) vs. the steady-state analytical results calculated by spreadsheet add-ins or formulas?
• how long must an ’actual’ system run before the observed average is likely to approach the steady-state average?

The last question can be particularly important for managers. The simulation demonstrates that the average wait in the queue over one day of simulated time need not be close to the long-run, steady-state average. Therefore, a manager who concludes that a queueing system will provide sufficiently good service based on steady-state averages may be surprised by the actual, day-by-day service that is actually provided. This observation also emphasizes the importance of the distribution of waiting times (e.g., Prob{wait ≤ 20 sec.}), rather than the average.

To ensure ease of use we limited the queueing simulator’s functionality to modeling only a G/G/1 system and displaying only a few performance measures. It will be useful to develop additional simulators for finite queues (with balking) and queues with impatient customers (with reneging), for these types of queues are common in practice. However, because we use the simulator to introduce the first qualitative insights about queues, and not as a tool for modeling real systems, the limitation to a single G/G/1 queue was appropriate.

2.3. Pedagogical Goals of the Little’s Law Simulation

Little’s Law (Little,1961) states that for a stable system,

\[
\text{average inventory} = \text{average throughput} \times \text{average time in system}.
\]

This relationship is useful when conducting any process analysis. We introduce this equation during the first days of our introductory operations management course and return to it when discussing queueing systems, inventory control, and supply chain management.

The Little’s Law Simulation was developed to demonstrate the Law and to clear up misunderstandings about when Little’s Law holds. When told that Little’s Law is based on system averages, many students interpret this statement to mean that Little’s Law will not hold when there is variability in the system.

For example, one student team completed a project during which they took frequent measurements of arrival rates, wait-times, and queue lengths for a cash register in a supermarket. They collected the data over a half-hour period and used the data to check Little’s Law. When Little’s Law did not seem to hold (average inventory was significantly higher than average throughput X average time in system), the students explained that “Little’s Law does not hold because there was large variations in check-out times. Some customers bought only milk while other customers had full carts.”

The students would have been correct if they had gone on to say that a larger sample size would have removed the discrepancy because the variability in the underlying random variables implies high variability in the sample means that had been collected. However, our experience is that students often have a more fundamental misunderstanding of Little’s Law: they believe that if there is a lot of variability, then the ’Law’ is violated, no matter how long the system runs.

The simulation helps students to see that if a system is observed long enough, Little’s Law will hold, no matter how much the inter-arrival times or system times vary. The variety of ‘tasks’ completed by the stick figures and their time-labels emphasize this point.

We also tell students that Little’s Law may not hold when a system is not in ‘steady-state’, e.g., when a significant number of units have gone into the system but have not yet come out (this was probably the reason for the supermarket team’s violation of Little’s Law). Again, the simulation can be useful in demonstrating this point: Little’s Law will be violated, temporarily, during the initial warm-up period (when the room is empty) and whenever the system parameters are abruptly changed.
2.4. Pedagogical Goals of the Inventory Simulation

Inventory management and reorder point/reorder quantity systems are often introduced using static pictures of on-hand inventory and inventory position. A simulation has many advantages over static pictures, for it helps the students to understand,

- how an order is triggered
- the difference between on-hand inventory and inventory position
- the meaning of "service level" (stock-outs that can occur at any time during the order cycle)
- the importance of the notion of demand during lead time, i.e., that demand variation before the reorder point is reached does not affect the service level
- the impact of changing reorder points on the service level, the number of lost orders, and the long-run average on-hand inventory
- the 'EOQ trade-off' between large orders with more inventory and small orders with more frequent deliveries
- the impact of increasing variability in demand or order lead-times.

We have observed that students are particularly confused when presented with inventory plots in which the on-hand inventory and the inventory position always diverge. By experimenting with the simulation, the students can see that this divergence (with small reorder quantities and/or long order lead times) implies that at least one 'truck' is always in transit.

3. What else is available?

Faculty have a wide range of options available to them to teach students the fundamental qualitative insights from queueing theory, to give them experience modeling queueing systems, and to solve quantitative decision problems involving queueing systems. There seem to be fewer options for demonstrating Little's Law and for experimenting with inventory systems.

Options for teaching queueing include 1) observing real systems, e.g., going to the local coffee shop or bank and watching customers arrive and queue, 2) using some simulation software, 3) using analytic queueing models. For this discussion we break option 2 into two categories: 2a) animated simulations, e.g., Arena or Extend, and 2b) spreadsheet simulations, e.g., Ingolfsson and Grossman (2002) and Ashley (2002). Option 3 can be broken into 3a) purely analytic formulas, and 3b) software that does the calculations for analytic models, i.e., spreadsheet add-ins such as Queueing Toolpak (Ingolfsson and Gallop, 2003) and QMacros (Groenevelt2002).

Whether we are teaching queueing or inventory theory, each of these educational tools has its place (Ingolfsson and Grossman, 2002, also discuss the relative advantages of these techniques, with a focus on spreadsheet simulation packages for queues). One dimension on which they differ is their level of abstraction. At one end of this spectrum we have the observation of a real system, followed closely by the use of an animated simulation. Next, a spreadsheet or similar software is used to provide graphical output in the form of charts, which must be interpreted by the student. Finally, there is a focus on analytic results, which requires a comfort level with mathematical models.

A second dimension is the level of detail that the user can see. When teaching queueing, one insight that we want students to understand is why queues form in systems even though utilization is less than 1. While all the methodologies give that conclusion, real systems, animated simulations and spreadsheet simulations, provide enough detail for students to understand intuitively why some customers wait even though at some point the server becomes idle, and thus utilization must be less than one. Another valuable attribute to aid student understanding is an ability to manipulate the parameters of the system to understand the sensitivity of, say waiting time, to those parameters. The ability to use these tools to model new situations is also desirable. Finally, if there is software involved, there is cost per student for buying it and the time spent learning to use it.

Of course none of the methodologies represents a panacea, excelling in all the criteria listed above. For example, a real system requires no ability to abstract yet usually has no parameters that are adjustable (or at least under student control). On the other hand, the M/M/1 formula for waiting time in queue can be graphed to see the sensitivity of that measure to arrival
rate yet it provides little intuitive understanding of why queues actually form with utilization less than 1.

An analytical model as a spreadsheet add-in has the advantage of providing essentially instantaneous calculations for many analytic queueing models, thus eliminating the drudgery of calculation. Yet it has the disadvantage of being a black box to the students; they are given no feeling for why the system should perform as the numerical outputs suggest. Finally, as pointed out by Ingolfsson and Grossman (2002) steady-state analytical results cannot model transient situations.

We have found that a combination of these tools is best. When teaching about queues, we use the following activities in sequence: (i) observations of a real system, (ii) observations of, and experimentation with, the simulation, (iii) discussion of the $M/M/1$ formula, and (iv) queueing problems and cases that require modeling queues or networks of queues with a spreadsheet add-in of an analytical model, QMacros in our case.

We use similar sequences of activities for teaching Little’s Law and Inventory Theory: observations of real systems, followed by simulation, analytical models, and applications to more complex problems. Again, we found little publicly-available simulation software that is designed for teaching these topics, so we developed our own. Ingolfsson and Grossman (2002) point out that the “customer graph” in a spreadsheet queueing simulation can be used to motivate an informal derivation of Little’s Law. Other authors have developed spreadsheet simulations for a more generic process under variability (Hill, 2002), ‘Goldratt’s Game’ to demonstrate the effects of statistical fluctuations and dependent events (Johnson and Drougas, 2002), and even a golf course (Tiger and Salzer, 2004).

4. Using the Simulations

We first introduce each simulation with a classroom demonstration, and students conduct hands-on experimentation later. The simulators are accessible wherever there is web access. If an instructor plans to have students use a simulator in class, and if in-class web access is not available, then the instructor can distribute the simulator files in advance so that they are pre-loaded on the students’ laptops (see Section 6 for a list of files).

4.1. The Airport Security Simulation in class

We use the following sequence of demonstrations to introduce the queueing simulation:

a. Run the simulation in slow mode with utilization close to but less than one and with both CVs equal to 0.

b. Change the CV of arrivals to 1 - the arrival variability is most obvious as the passengers cross the screen - and observe a queue form.

c. Increase the CV of service to 1 and observe that the queue gets longer.

d. Now reset the simulation and place it in "fast" mode and continue with the same scenario with both CVs equal to 1.

e. Increase the arrival CV even further to two,

f. Finally have the security guard take a 10-minute ‘break’ by moving the "Service rate" slider down to a very low number, e.g., 0.1 passengers/min (moving the slider down to its very lowest setting will produce an "Error" message but will have essentially the same effect). The queue length builds rapidly, but we want to demonstrate how long it takes, after the security guard has returned, to have the system return to a normal state.

4.2. The Little’s Law Simulation in class

The Little’s Law simulation can be started at the beginning of class with parameters set for a high arrival CV and a high time-of-stay CV. As Little’s Law is introduced, the students can watch the three values converge. Transitory deviations among the values can be used to motivate class discussions about what constitutes a "stable" system.

4.3. The Inventory Simulation in class

We have also run the inventory simulation in-class while introducing reorder point/reorder quantity systems. While the simulator is running, the instructor can point out when an order is triggered and when one arrives.
Instructors may want to begin with both the Arrival CV=0 and the Lead-time CV=0, and then change the "Truck load" parameter to demonstrate the EOQ trade-off: large truck-loads are associated with higher 'triangles' and more inventory while smaller truck-loads imply more frequent deliveries.

Once the instructor adds variability to the simulation, there is always some excitement in the class every time the on-hand inventory approaches zero. The instructor might then welcome suggestions for parameter values from the class. Be sure to try the combination of long Lead-times and small Truck loads, to show that for some parameters the on-hand inventory will never be equal to the inventory position.

4.4. Using the simulations outside of class

After an in-class demonstration the students may then, as a homework exercise, use the software. Three possible levels of this activity are

1. unguided play
2. guided play
3. answer specific exercises possibly to be submitted and graded.

The fact that any output of the simulation will necessarily vary from trial to trial, makes grading student answers somewhat problematic. Another option would be,

4. prepare answers to specific questions to be followed by a class discussion the next day about what people observed to be sure that the main points were all covered.

For the queueing simulation, we have prepared a document with a series of exercises, and another with suggested solutions. The first 7 exercises replicate and elaborate upon the sequence of demonstration exercises described above. (See Appendix for the exercises and solutions) Exercise 8 asks the students to compare the observed average wait in queue from the simulation with the average predicted by the $M/M/1$ formula.

The solution discusses the reasons why the observed average may differ significantly from the average predicted by the formula.

The first author also used \(^{(5)}\) to make the exercises available to an MBA core Operations Management class as an on-line survey, and the survey was completed by 74 students. The following three links provide details about the survey:

1. The original survey questions (survey_questions.pdf\(^{(6)}\))
2. a summary of the results (survey_answers_summary.pdf\(^{(7)}\)(compiled automatically by zoomerang)
3. a spreadsheet with the details of every answer and comment survey_answers_details.xls\(^{(8)}\).

In the next section we discuss what we observed during the in-class demonstrations and from the survey results.

5. Evidence of Learning

We have used all three simulations in introductory Operations Management classes for both full-time and executive MBAs, although we have used the queueing simulation in many more classes than the other two because the queueing simulator was developed a few years earlier. Unfortunately, we have no empirical evidence from controlled experiments to demonstrate that the simulations have improved learning. Instead we present the results of student surveys completed after working with the queueing simulation as well as additional supporting anecdotes.

Measuring the effectiveness of a simulation as a teaching tool can be fiendishly difficult, for outcomes can depend on the characteristics of the subject matter, the students, the learning environment, the simulation, and the choice of alternate learning methods. De Jong and Wouter (1998) discuss the challenges of performance assessment for simulations in science education and, after reviewing the literature conclude "there is no clear and univocal outcome in favor of simulations." (pg. 181) Within the business education community
Web-based Simulations for Teaching Queueing, Little’s Law, and Inventory Management

specialists in Systems Dynamics have been particularly active in developing "flight simulators" for teaching about complex systems to managers (Lane, 1995). There have been few studies that attempt to establish the value of this approach. One example is Pfahl et al. (2004), who attempt to measure whether a simulation can improve students' understanding of behavior patterns in large software projects. Their results are mixed, with relative improvements in some areas of knowledge and none in others. Größler (2004) discusses the barriers to reliable performance assessment of Systems Dynamics simulators and concludes that for advocates of simulators, "the effectiveness of their favorite tool has not been proven, and will never be in a general and situation independent way." (pg. 271)

However, we are convinced that our simulations did help our MBA students to build intuition about systems subject to variability, and we provide evidence here. We will focus on the queueing simulation, because we have more experience, and the zoomerang survey data (survey_answers_summary.pdf(9)), for that model.

We often begin our study of queueing just after we have finished a unit on basic process analysis: the calculation of capacity and resource utilization which, we emphasize, are performance measures based on long-run averages. To introduce the simulation we often ask the class, "if utilization is 0.9, will anyone have to wait?" A significant portion of the class (sometimes half) will answer, "no." Then we start the simulation with CV=0 for both inter-arrival and service times, and these students feel vindicated as the customers move smoothly in and out of the server. However, as we raise the arrival CV values, there is often some confusion as the students see queues start to build (we emphasize that we are not changing the utilization of the server). The confusion is resolved as they see how variability causes temporary congestion.

During the demonstration, students are often surprised by the extreme fluctuations in queue sizes when utilization is still significantly below 1 (e.g., at 0.9). In class they often ask us to change parameters to see the impact on the queue - a level of involvement that is higher than when we demonstrate our spreadsheet add-in.

The zoomerang summary(10) and individual results(11) provide additional information about how students initially understand queueing and how the simulation affects their understanding. Here are a few observations:

Questions 5 and 8: In these questions we ask if changing the arrival or service variability will change the server's utilization. In the survey, almost 10% of students thought that raising a CV would change the utilization. Therefore, in classroom discussion we emphasize that utilization is based on average rates and does not change if the CVs change.

Question 9: We ask students to note whether the queue length grows larger or smaller when the service CV is increased. A few students observe smaller queues. In class we emphasize that, because this is a random process, there are times when short-term results may not be in the 'expected' direction - purely by chance.

Questions 12 and 13: Here we ask whether the average wait time is a good description of the time an individual tourist must wait in queue. 93% of students answer "no", and their individual comments may be the most interesting output from the survey (see column Q in the individual result spreadsheet(12)). Many students write something like the student in row 29, "No because there are a lot more observations above and below this mean then [sic] there are close to the mean. So most people are not waiting the average time." This may be the first time that students understand that virtually no one experiences the average. Before seeing the simulation, most students view the mean wait time as a reasonable measure of system performance - perhaps the most reasonable measure. After seeing the simulation, many students are vocal in their dislike of the mean as a representation of the system. The first author actually had to argue hard in classes as to why the mean might still be useful.

Questions 18-20: We ask the students to simulate a 10-minute surge in demand so that the load factor is temporarily greater than 1. 86% of the students observe that the waiting time does not return quickly to its

(9) http://ite.pubs.informs.org/Vol7No1/DobsonShumsky/survey_answers_summary.pdf
(11) http://ite.pubs.informs.org/Vol7No1/DobsonShumsky/survey_answers_details.xls
(12) http://ite.pubs.informs.org/Vol7No1/DobsonShumsky/survey_answers_details.xls
original (low) level after the surge. Their comments (in column Y of the individual result spreadsheet\(^\text{(13)}\)) demonstrate that many now have an understanding of an important phenomenon in nonhomogeneous queues: that the longest waits occur after the peak arrival period (see, for example, Green and Kolesar, 1998). For example, one student writes, "After the surge there was a backlog of customers in the queue, so these increased the average waiting time dramatically."

Questions 21-26: These questions ask the students to compare the simulation output with the mean wait in queue predicted by an analytical model. Most students see that the simulation, when run for a short period of time, is unlikely to produce a sample mean that matches the analytical result. They also see that the average wait in queue can vary significantly, even when the average is taken over an entire simulated day.

Questions 28-29: We ask how students might calculate "Prob\{Wait ≤ 1 minute\}" from the simulation output. Most students see that the observations from the simulation can be used to build a distribution (see the comments in column AH). However, a significant number of students suggest using the normal distribution to find the desired probability. For example, the student writing in row 75 states, "mean is given then in each step of the process we could calculate variation from the mean and then we could calculate Probability using normal dist." These results are consistent with Ingolfsson and Zalkind (1999), who found that approximately a quarter of their undergraduate students believed that "all distributions are bell-shaped." Therefore, it is important to emphasize in class that waiting-time distributions can be very non-normal, with long right tails.

6. Download Information

Anyone can run the simulations directly from the following three web pages:

security_simulation.php\(^{(14)}\)
little.php\(^{(15)}\)
inventory.php\(^{(16)}\)

The simulation code, web-page ‘wrappers,’ and supporting documentation are also included in a downloadable zip file (simulations.zip\(^{(17)}\)). The zip file contains 9 files. The first 5 are related to the Security Simulator.

1. security_simulation.dcr: the animation program for the security simulator,
2. security_simulation.html: the html 'wrapper' for the security simulator. To start up the program, open this file using a browser. The file may be opened from a hard disk, or over the web.
3. instructions.html: a help file for the security simulator. Note: these three program files (security_sim.dcr, security_sim.html, and instructions.html) should all be placed in the same directory.
4. experiments.mht: a set of exercises designed to help students see a variety of queueing phenomena.
5. experiments_results.mht: suggested results from the experiments.
6. The remaining four files control the other two simulations.
7. little.swf: the animation program for the Little's Law simulation
8. little.html: the html 'wrapper' for the Little's Law simulation
9. inventory.swf: the animation program for the Inventory simulation
10. inventory.html: the html 'wrapper' for the Inventory simulation

7. Technical Details

The Security Simulator was developed using Macromedia Director and the Lingo programming language,
while the Little’s Law and Inventory Simulations were written in ActionScript for the Macromedia Flash player. Both languages contain a uniform random number generator and we used this to generate random service times and random inter-arrival times. These times are distributed according to the Gamma distribution, with mean and coefficient of variation specified by the user (these two parameters are sufficient to fully specify the appropriate Gamma distribution). A standard rejection method is used to generate samples from the Gamma distribution.

Changes in the slider positions (parameter values) only affect the probability distributions of subsequent events. For example, in the queueing simulation each customer is assigned a service time that is distributed according to the “service rate” and service “CV” parameters specified by the sliders at the time that the customer enters service. If the service rate slider is moved while a customer is in service, the new service rate affects the next customer to enter service but not the one in service.

In the inventory simulation, the long-run average "Predicted on hand” inventory is

\[
\text{Predicted on hand} = \frac{\text{Truck load}}{2} + \text{ROP} - (\text{Arrival Rate}) \times (\text{Lead-time}).
\]

To install Shockwave and run the Airport Security Simulator, ActiveX controls must be enabled in the browser’s settings (see Microsoft Help and Support website with KB #816702\(^{(18)}\), if there are problems).

8. Acknowledgements

Thanks to Sheldon Tetewsky, of The Center for Health and Social Research at Buffalo State College, who assisted with the design and development of the first version of the Security Simulator. Thanks also to Nathan Dobson who helped to code the Little’s Law and Inventory Simulators. We are grateful to two anonymous referees and Denise Troxell for their careful reading of the manuscript and their editorial suggestions.

References

Groenevelt, H., (2002), QMacros Version 5.7 User Guide, Manuscript from the William E. Simon School of Business Administration, University of Rochester, Rochester, NY.Contact groenevelt@simon.rochester.edu for more information.

Johnson, A. C. and A. M. Drougas (2002), "Using Goldratt's Game to Introduce Simulation in the Introductory Operations Management Course,”

\(^{(18)}\)http://support.microsoft.com/kb/816702/en-us

Appendix

experiments.php

Suggested Experiments with the Airport Security Simulator

Profs. Gregory Dobson and Robert Shumsky

While a good method for learning from the simulator is to open it up and begin 'playing,' the following experiments provide some structure for learning.

Part I

Experiments 1-3 should be done with Simulation speed = slow.

1) Set the following parameters:

Arrival rate = 9/min. Arrival CV = 0 Service rate = 10/min. Service CV = 0

Before starting the simulation, answer these questions: What is the utilization of the resource? What do you expect to happen to the queue length?

Now press 'Reset/Start'. What happens?

2) As the simulation runs, move the Service CV up to 1.0. Now what is the utilization? What happens to the queue length? Why?

3) As the simulation runs, leave the Service CV at 1.0, and move the Arrival CV to 1.0 as well. Now what is the utilization? What happens to the queue length? Why?

Part II

Experiments 4-7 should be done with Simulation speed = medium (if you are patient and want to watch the queues closely) or fast (if you like to see results more quickly).

4) Set the following parameters:

Arrival rate = 9/min. Arrival CV = 1 Service rate = 10/min. Service CV = 1

Press 'Reset/Start' and observe the simulation for at least 60 minutes of simulated time. What is the mean waiting time? Is this average a good description of the time an individual tourist must wait in queue? Why or why not?

5) With the simulation still running, set the Arrival rate=10/min. and keep the Service rate=10/min. (this is a very slight increase in the arrival rate). What is the new utilization? Watch the simulation for a least 60 more simulated minutes. How does the behavior of the queue compare with the behavior you saw in experiment 4? What do you think would happen if you watched the queue for a much, much longer time?

6) 'Stop' the simulation. Now set Arrival rate=10/min. and Service rate=9/min. (leave the CV’s alone, with both equal to '1'). What is the new utilization? What is the load factor? Press 'Reset and Start', and watch for at least
60 additional simulated minutes. How does the behavior of the queue compare with the behavior you saw in experiments 4 and 5? What do you think would happen if you watched the queue for a much longer time?

7) ‘Stop’ the simulation. Now we will see what happens when there is a temporary, 10-minute, surge in the arrival rate. Set the simulation speed to ‘fast’, the Arrival rate = 5.0/min., Service rate = 6.0/min., and both CVs = 1.0. Before starting the simulation read the following instructions (things will move fast, and you should be prepared). After you have prepared yourself, press ‘Reset and Start.’ When the Simulation time reaches 10 minutes, move the Arrival rate slider to 8.0/min. (that’s the arrival ‘surge’) and do not change any other parameters. Watch the simulation, and 10 minutes later (when the Simulation time reaches 20 minutes), move the Arrival rate slider back down to 5.0/min. Watch the simulation and press ‘Stop’ just before it reaches 60 minutes. What happens to the Waiting time during the 10-minute surge? After the 10-minute surge? How do you explain this?

Part III

When both CVs = 1.0, the security simulator is a model of an $M/M/1$ queue. Let $\lambda=$ the arrival rate and $\mu=$the service rate. Queueing theory predicts that, for an $M/M/1$ queue,

We will compare this prediction with results from the simulation. The following experiments should be done with Simulation speed = fast.

8) Given the parameters from experiment 4, what is the predicted average wait in queue (in seconds)? Now run the simulation with the same parameters. After 10 minutes of simulated time, how closely does the simulator’s wait in queue match the formula’s prediction? Would you expect the two to match after 10 minutes? Why or why not? Let the simulation continue to run. After 60 minutes, how does the simulation average compare to the formula? After 120 minutes? If you have the patience and time, let the simulation run, and make the comparison after an eight-hour day (480 simulated minutes).

From this experiment, what can you conclude about the formula for the ‘steady-state average wait in queue’?

9) A statistic of interest is often the probability that the waiting time is less than or equal to a certain quantity, e.g., $\Pr\{Wait \leq 1 \text{ minute}\}$. How might you calculate this number using the simulation? Propose a general method - you cannot actually perform the calculation using this simulation.
The Airport Security Simulator

© Gregory Dobson, William E. Simon School of Business Administration, University of Rochester and Robert Shumsky, Tuck School of Business Administration, Dartmouth College

The Security Simulator is a web-based, interactive computer model of a security checkpoint at an airport. By experimenting with the simulator, students can examine the impact of utilization, arrival variability, and service-time variability on congestion in a single-server queueing system.

Preparing to run the simulator

Your browser must include the Plug-In “Macromedia Shockwave.” To find out if your browser has Shockwave installed, go to www.macromedia.com/shockwave/welcome. If you do not have the Plug-In, download it from edc.shockwave.com/shockwave/download. The simulator itself can be opened by opening the web file, “security_sim.html”.

Running the simulator

To start the simulation, press the Reset/Start button. This empties the queue, re-initializes all statistics to ‘zero’, and starts the simulation using the current parameters. To end the simulation, press the Stop button.

While the simulation is stopped, and at any time while the simulation is running, you can move sliders to change the following parameters:

- **Arrival rate**: the rate of tourist arrivals to the system. The arrival rate may vary from 1 passenger/min. to 10 passengers/min.
- **Arrival CV** (under the Arrival rate slider), the coefficient of variation for interarrival times. This ‘Var Coef, Arrivals’ may vary from 0 to 2.
- **Service rate**: the rate of service within the security checkpoint. The service rate may vary from 1 passenger/min. to 11 passengers/min.
- **Service CV** (under the Service rate slider), the coefficient of variation for service times. This ‘Var Coef, Service’ may vary from 0 to 2.

If you move a slider while the simulation is running, the new parameter applies to arrival times and service times after the slider has been moved. For example, if you move the ‘Service rate’ slider from 1 passenger/min. to 10 passengers/min., the average service time will drop immediately after the slider has been moved; tourists who were in the queue when the slider was moved will benefit from the quicker service times.

While the simulation is running, the simulation plots each tourist’s time in queue (Waiting time) with a blue dot. The point is plotted at the moment the tourist leaves the queue and enters service. In addition, a running average of the Waiting time is plotted with a green line. The running average is the mean time in queue observed since the last time you pressed the ‘Reset/Start’ button.

Simulator speeds

When the simulation is not running, you may set the simulation speed. This establishes the relationship between the timing of events in the ‘real world’ and the timing of events in the simulation. There are three speeds.

- **Slow**: 3X real-time (e.g., a service time that would last 12 seconds in real-time instead lasts 4 seconds in the simulation).
- **Medium**: 20X real-time.
- **Fast**: 50X real-time.

For all speeds, the simulation runs continuously. When the Simulation runs long enough to reach the right-hand side of the graph (6 minutes for slow speed, 30 minutes for medium or fast), the simulation continues to run with a new graph showing the next time period. However, the averages represented by the green line are found by averaging all observed waiting times since the beginning of the simulation run at time=0.
Suggested Results for Experiments with the Airport Security Simulator

Prof. Gregory Dobson and Robert Shumsky

1) Given these parameters, the utilization is 0.9. Because there is no variability, we do not expect to see any queuing and waiting. In particular, an arrival occurs every $\frac{60}{3} = 6.7$ seconds and each service lasts $\frac{60}{10} = 6$ seconds. Therefore, there is some ‘slack’ time between each end of service and the beginning of the next service.

As expected, this simulator displays a constant ‘0’ for the Mean Wait in Queue.

2) Increasing the service-time variability does not change the utilization (utilization is calculated from the average throughput and capacity). Therefore, the utilization remains 0.9. However, because the service time is variable, a queue occasionally builds up and customers sometimes wait. For example, if a customer’s service time is significantly longer than average, one or more customers must wait until that customer is finished. Even if the subsequent service times are significantly shorter than the average, some damage has been done: a queue was created, and some customers had to wait.

3) As in experiment 2, increasing the arrival variability does not change the utilization, which remains 0.9. However, given both arrival and service-time variability, the queue is more likely to build and is longer, on average. Arrival variability implies that customer arrival can ‘bunch up.’ So, if an unusually long service time is paired with an unusually large ‘bunch’ of arrivals, a long queue forms quickly.

4) After 60 minutes of simulated time, the observed mean waiting time may be anything within a fairly wide range (I have observed averages as low as 20 seconds and as high as 125 seconds). This variation is a consequence of the variability in the queue lengths and waiting times. Over the course of the 60 minutes, the queue can rise and fall dramatically. It is quite possible for a customer to show up, find no one in queue, and receive service immediately. It is also possible for a customer to find 35 other customers waiting ahead of her. The ‘Mean Wait in Queue’ can be a useful summary statistic, but the actual distribution of waiting times can cover a wide range. (See experiment 9, below, for a discussion of how we might describe that distribution).

5) Now, the utilization is 1.0. You should find the variation in the queue size to be even more dramatic than in experiment 4, and the mean wait in queue is likely to rise. With a utilization of 1.0, it is again possible observe a queue size of zero, but it is also possible to observe a queue that grows to be hundreds of customers long.
In fact, when utilization is 1.0 the queue length follows a random walk with a lower-bound of 0. If we wait long enough, it is possible to observe any queue length. Therefore, over an infinite period of time the waiting time of a customer can be arbitrarily high, and the mean wait in queue is infinite.

6) Now the utilization is still 1.0, but the load factor is $10/9 \approx 1.1$. After only a few minutes the queue length and waiting time should rise steadily. As long as we allow the arrival rate to be larger than the service rate, the queue will continue to grow, and grow, at a rate of approximately 1/min.

7) During the 10-minute ‘surge’, the load factor moves from $5/6 \approx 0.83$ to $9/9 \approx 1.33$. Of course, the queue will grow larger during the surge. The growth will have a rate of approximately $9/6 = 1.5$ min, so over a 10-minute period we expect to add approximately 20 people to the queue.

The following two effects will also likely to be seen:

- the Mean Wait in Queue will peak significantly after the demand surge.
- it may take a long time to work off the backlog built during the 10-minute surge, often as long as 20-30 minutes.

The first effect makes sense when you focus on the customer who is likely to have the worst service: the customer who joins the long line towards the end of the demand peak. This customer will enter service after the peak is over, and therefore her time in queue will be recorded after the peak.

The second effect is a consequence of the high non-peak utilization (0.83). During the period after the peak, the service rate exceeds the arrival rate by just 1 customer/minute. Given the variability in the process, there is also the chance that the queue may increase even after the arrival rate declines.

8) Here, $A = 9/6 \text{ min}$ and $\mu = 10/6 \text{ min}$, so that,

$$\text{steady-state average wait in queue} = \frac{9}{10(10 - 9)} = 0.9 \text{ min} = 54 \text{ sec.}$$

After just 10 minutes of simulated time, the Mean Wait in Queue from the simulator is likely to be less than 54 sec (users usually observe an average between 10 and 25 seconds, but this is certainly not guaranteed). The average is biased downwards because the system begins empty, so that the first few customers find a relatively empty system and have relatively short waiting times. After just 10 minutes, we have not gathered many sample points from the simulation, and the effects of starting with an empty queue have not worn off.
As we saw in Experiment 4, the Mean Wait observed after 50 minutes of simulated time may fall within a very wide range. After 120 minutes the mean is likely to be closer to the 54 seconds predicted by the formula, and after 480 simulated minutes it is likely to be even closer. However, the waiting time has an enormous amount of variability and the average after a single eight-hour day can vary significantly around the mean. In practice, the 'true mean' can only be found by running the simulation for thousands of simulated hours and observing millions of simulated customers.

For example, the histogram below shows the results of 1000 simulations of eight-hour days - you only ran one simulation (here, each simulation was for 10 hours, but the results from the first 2 hours were discarded because of impact of starting with an empty system). We can see that the overall average of 53.6 minutes is close to the average of 54 minutes from the formula, but there is much variability around this mean.

In general, it can be shown that the standard deviation of the wait in queue for this M/M/1 system in steady-state is 60 sec.\(^1\) After eight hours of observation, we have collected queuing statistics for 4320 customers (9min x 60 min/hour x 8 hrs = 4320). If each customer’s waiting time were independent, and if we have observed 4320 customers, then the mean observed waiting time would be approximately normally distributed with a standard deviation of $60/\sqrt{4320} = 0.9$ sec. But the histogram above shows that the standard deviation of the sample average is 16.5 sec., much, much larger. Why? The answer, of course, is that the waiting-time samples are not independent, but instead have a large amount of autocorrelation. If one customer arrives during a congested period, then it is likely that the next one will, and the next one....

The overall point here is that the statistic 'mean wait in queue' is useful for describing the long-run, aggregate behavior of the queue. But it certainly does not describe the actual experience of individual customers, nor does it describe the distribution of the daily average. The average on any particular day may be much worse, or much better, than this overall expectation.

9) \(P(|\text{Wait}| < 1 \text{ min}) \) might be found from the simulator by counting the proportion of blue 'dots' that fall below a horizontal, 1-minute line on the graph. Performance measures like these are certainly useful as a supplement to the mean wait in queue statistic, they tell us something about the distribution around the mean. Both the simulator and analytical analysis tell us that \(P(|\text{Wait}| < 1 \text{ min}) \approx 0.67 \).
DOBSON & SHUMSKY
Web-based Simulations for Teaching Queueing, Little’s Law, and Inventory Management

The Little’s Law Simulation

Current $I = 20$

Arrival rate: 3.4
Time of stay: 24

Arrival CV: 1.2
Time of Stay CV: 1.4

Calculating Averages
Simulation

©Gregory Dobson and Nathan Dobson
The Inventory Simulation

on hand: 37
on hand & on order: 137
predicted on hand: 65

lost sales: 0
Average service level: 100%

Arrival Rate: 5
Lead-time: 12
Truck load: 50
Arrival CV: 2
Lead-time CV: 2
ROP: 100

©Gregory Dobson and Nathan Dobson