John von Neumann Theory Prize
Share:

2020 Winner(s)
- Adrian S. Lewis,
Cornell University
The 2020 INFORMS John von Neumann Theory Prize is awarded to Adrian S. Lewis for his fundamental and sustained contributions to continuous optimization, operations research, and, more broadly, computational science. His work has pushed the frontiers of nonlinear optimization and convex analysis and developed path-breaking theory that has led to much subsequent work. The clarity and elegance of his writing is well-known and admired. Through scholarly papers, research monographs, and mentorship, he has influenced several generations of optimization researchers, as well as practitioners.
Professor Lewis has published seminal work on a wide range of topics including eigenvalue optimization,quasi-Newton algorithms, gradient sampling methods and control, activity identification via partial smoothness, alternating projection methods, conditioning and error bounds, semi-algebraic variational analysis and the Kurdyka-Lojasiewicz inequality, and hyperbolic polynomials. His results on convex analysis over Hermitian matrices opened the door to the subdifferential analysis of such functions, as well as to a duality and sensitivity theory for optimization problems with such functions. Together with Burke and Overton, he produced a series of papers leading to a deep understanding of the variational behavior of spectral functions, including the spectral radius. His convergence guarantees for alternating/cyclic projection methods, both for convex and nonconvex settings, are used to find a point at the intersection of finitely many sets, a prototypical problem in computational mathematics. A consistent theme in Professor Lewis's work is to bring variational analytic tools and computation closer together. For example, his recent paper, with Drusvyatskiy and Ioffe, proves that under a natural transversality condition, described in variational analytic terms, the method of alternating projections converges linearly locally. His more recent work has focused on understanding the impact of variational analytic notions of stability on linear/quadratic rates of convergence of Gauss-Newton type methods for minimizing compositions of convex functions and smooth maps. These results have implications for a number of fundamental problems including phase retrieval, matrix factorization, and robust principal component analysis.
Purpose of the Award
2020 Committee Chair
Asuman Ozdaglar
Massachusetts Institute of Technology
awards@informs.org
The John von Neumann Theory Prize is awarded annually to a scholar (or scholars in the case of joint work) who has made fundamental, sustained contributions to theory in operations research and the management sciences. The award is given each year at the INFORMS Annual Meeting if there is a suitable recipient. Although the Prize is normally given to a single individual, in the case of accumulated joint work, the recipients can be multiple individuals.
The Prize is awarded for a body of work, typically published over a period of several years. Although recent work should not be excluded, the Prize typically reflects contributions that have stood the test of time. The criteria for the Prize are broad, and include significance, innovation, depth, and scientific excellence.
The award is $5,000, a medallion and a citation.
2021 Submission Deadline: June 1, 2021
The Prize Committee is currently seeking nominations, which should be in the form of a letter (preferably email) addressed to the prize committee chair (below), highlighting the nominee's accomplishments. Although the letter need not contain a detailed account of the nominee's research, it should document the overall nature of his or her contributions and their impact on the profession, with particular emphasis on the prize's criteria. The nominee's curriculum vitae, while not mandatory, would be helpful.
About the Award/Namesake
John von Neumann was a brilliant mathematician, synthesizer, and promoter of the stored program concept, whose logical design of the IAS became the prototype of most of its successors - the von Neumann Architecture. von Neumann was invited to visit Princeton University in 1930, and when the Institute for Advanced Studies was founded there in 1933, he was appointed to be one of the original six Professors of Mathematics, a position which he retained for the remainder of his life. Postwar von Neumann concentrated on the development of the Institute for Advanced Studies (IAS) computer and its copies around the world. His work with the Los Alamos group continued and he continued to develop the synergism between computers capabilities and the needs for computational solutions to nuclear problems related to the hydrogen bomb.