Forecasting Software Survey
Page 22
| Product | Forecasting Methods Available (continued) | |||||||
| Machine Learning | ||||||||
| Machine Learning: not included | Support Vector Machine | K-Nearest Neighbors | Gradient Boosting | Random Forrest | Classification and Regression Trees | Other machine-learning techniques | Specify other machine-learning techniques | |
| Analytic Solver Data Mining | y | y | y | y | K-means and Hierarchical Clustering, Discriminant Analysis, Naive Bayes, Ensembles of all algorithms, Association Rules; Feature selection (Filtering, Wrapping, Embedded). | |||
| Analytica | y | y | ||||||
| Azure ML Package for Forecasting | y | y | y | y | y | y | Anything with a fit/predict interface | |
| Autobox | y | |||||||
| DPL | y | |||||||
| EViews | y | |||||||
| Forecast Pro | y | |||||||
| iqast forecast desktop & iqast forecast server | y | y | y | y | y | k-nearest neighbors, MARS/EARTH adapative regression splines, Extreme Learning Machines. | ||
| Logility Voyager Solutions | y | |||||||
| Optimal Scientist | ||||||||
| OxMetrics Enterprise | ||||||||
| RASON Data Mining | y | y | y | y | K-means and Hierarchical Clustering, Discriminant Analysis, Naive Bayes, Ensembles of all algorithms, Association Rules; Feature selection (Filtering, Wrapping, Embedded). | |||
| RoadMap Global Planning Solution - 360 | y | Geneva Expert System | ||||||
| SAS Forecast Server | y | y | y | y | y | y | NN & ML capabilities available through SAS Visual Data Mining and Machine1 Learning, and SAS Enterprise Miner | |
| Smart Inventory Planning and Optimization | y | Proprietary | ||||||
| SOLVENTURE LIFe - Leading indicator forecasting software | y | |||||||
| Stata | y | y | y | y | y | y | lasso, ridge regression, elastic net, clustering, penalized logit, kernel-based regularized least squares, ridge regression, chi-squared automated interaction detection, partial least squares path modeling | |
| Statgraphics | y | y | y | |||||
| Stratus | ||||||||
| Vanguard Forecast Server | y | y | y | Expert selection approaches | ||||
| XLMiner SDK | y | y | y | y | K-means and Hierarchical Clustering, Discriminant Analysis, Naive Bayes, Ensembles of all algorithms, Association Rules; Feature selection (Filtering, Wrapping, Embedded). | |||
Forecasting Software Survey Pages:
Introduction | Page 1 | Page 2 | Page 3 | Page 4 | Page 5 | Page 6 | Page 7 | Page 8 | Page 9 | Page 10 | Page 11 | Page 12 | Page 13 | Page 14 | Page 15 | Page 16 | Page 17 | Page 18 | Page 19 | Page 20 | Page 21 | Page 22 | Page 23 | Page 24 | Page 25 | Page 26 | Page 27 | Vendor Directory | Accompanying Article